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Restoration of chiral symmetry in excited hadrons.

L. Ya. Glozman
Institute for Theoretical Physics, University of Graz, Universitätsplatz 5, A-8010 Graz, Austria∗

Abstract

Physics of the low-lying and high-lying hadrons in the light flavor sector is re-

viewed. While the low-lying hadrons are strongly affected by the spontaneous

breaking of chiral symmetry, in the high-lying hadrons the chiral symmetry

is restored. A manifestation of the chiral symmetry restoration in excited

hadrons is a persistence of the chiral multiplet structure in both baryon and

meson spectra. Meson and baryon chiral multiplets are classified. A relation

between the chiral symmetry restoration and the string picture of excited

hadrons is discussed.

I. INTRODUCTION

It was believed by many people (and is still believed by some) that there should be some
universal physical picture (model) for all usual hadrons.1 If we consider, as example, atoms,
there is indeed a universal picture for all excitations: electrons move in the central Coulomb
field of the nucleus. Such a system is essentially nonrelativistic and relativistic effects appear
only as very small corrections to the nonrelativistic description. However, hadrons in the
u, d, s sector are more complex systems. This complexity comes in particular from the very
small masses of u and d quarks. These small masses guarantee that the role of relativistic
effects, such as creation of pairs from the vacuum, should be important. If so in the u, d, s
quark sector a description should incorporate valence quarks, sea quarks and gluonic degrees
of freedom.

The main message of these lectures is that physics of the low-lying hadrons in the u, d, s
sector is essentially different from the physics of the highly excited states. In the former
case spontaneous breaking of chiral symmetry is crucial for physics implying such effective
degrees of freedom as constituent quarks (being essentially quasiparticles [1]), constituent

∗e-mail: leonid.glozman@uni-graz.at

1Under ”usual” hadrons we assume those ones which are not glueballs and with quantum numbers

which are provided by the minimal q̄q or qqq quark Fock component.
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quark - Goldstone boson coupling [1,2], etc. In the latter case, on the other hand, sponta-
neous breaking of chiral symmetry in the QCD vacuum becomes irrelevant, which is referred
to as effective chiral symmetry restoration or chiral symmetry restoration of the second kind
[3–7]. Hence in this case other degrees of freedom become appropriate and probably the
string picture [8] with ”bare” quarks of definite chirality at the ends of the string [9] is a
relevant description.

It is not a surprise that physics of the high-lying excitations and of the low-lying states
is very different in complex systems. Remember that in Landau’s Fermi-liquid theory (QCD
is a particular case of such a theory) the quasiparticle degrees of freedom are relevent only
to the low-lying excitations while high-lying levels are excitations of bare particles.

These lectures consist of the following sections. In the second one we review chiral
symmetry of QCD. The third section is devoted to a description of the low-lying hadrons,
which are strongly affected by spontaneous breaking of chiral symmetry. Empirical hadron
spectra are reviewed in the section IV. In the fifth section we introduce chiral symmetry
restoration in highly excited hadrons. In the next section a toy pedagogical model will
be discussed which clearly illustrates that there is no mystery in symmetry restoration in
high-lying spectra. Implications of the quark-hadron duality in QCD for spectroscopy are
discussed in section VII. In sections VIII and IX we will classify chiral multiplets of excited
mesons and baryons respectively. In section X it is shown that a simple potential constituent
quark model is incompatible with the chiral symmetry restoration in excited hadrons. A
relation between the chiral symmetry restoration and the string picture of excited hadrons
is discussed in section XI. Finally, a short summary will be presented in the conclusion part.

II. CHIRAL SYMMETRY OF QCD

Consider the chiral limit where quarks are massless. It is definitely justified for u and d
quarks since their masses are quite small compared to ΛQCD and the typical hadronic scale
of 1 GeV; in good approximation they can be neglected. Define the right- and left-handed
components of quark fields

ψR =
1

2
(1 + γ5)ψ, ψL =

1

2
(1 − γ5)ψ. (1)

If there is no interaction, then the right- and left-handed components of the quark field get
decoupled, as it is well seen from the kinetic energy term

L0 = iΨ̄γµ∂
µΨ = iΨ̄Lγµ∂

µΨL + iΨ̄Rγµ∂
µΨR, (2)

see Fig. 1.
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FIG. 1. Left-handed and right-handed massless fermions.

In QCD the quark-gluon interaction Lagrangian is vectorial, ψ̄γµψAµ, which does not mix
the right- and left-handed components of quark fields. Hence in the chiral limit the left- and
right-handed components of quarks are completely decoupled in the QCD Lagrangian. Then,
assuming only one flavor of quarks such a Lagrangian is invariant under two independent
global variations of phases of the left-handed and right-handed quarks:

ψR → exp (ıθR)ψR; ψL → exp (ıθL)ψL. (3)

Such a transformation can be identically rewritten in terms of the vectorial and axial trans-
formations:

ψ → exp (ıθV )ψ; ψ → exp (ıθAγ5)ψ. (4)

The symmetry group of these phase transformations is

U(1)L × U(1)R = U(1)A × U(1)V . (5)

Consider now the chiral limit for two flavors, u and d. The quark-gluon interaction
Lagrangian is insensitive to the specific flavor of quarks. For example, one can substitute
the u and d quarks by properly normalized orthogonal linear combinations of u and d quarks
(i.e. one can perform a rotation in the isospin space) and nothing will change. Since the left-
and right-handed components are completely decoupled, one can perform two independent
isospin rotations of the left- and right-handed components:

ψR → exp

(

ı
θa

Rτ
a

2

)

ψR; ψL → exp

(

ı
θa

Lτ
a

2

)

ψL, (6)

where τa are the isospin Pauli matrices and the angles θa
R and θa

L parameterize rotations of
the right- and left-handed components. These rotations leave the QCD Lagrangian invariant.
The symmetry group of these transformations,

SU(2)L × SU(2)R, (7)

is called chiral symmetry.
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Actually in this case the Lagrangian is also invariant under the variation of the common
phase of the left-handed uL and dL quarks, which is the U(1)L symmetry and similarly - for
the right-handed quarks. Hence the total chiral symmetry group of the QCD Lagrangian is

U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)L × U(1)R = SU(2)L × SU(2)R × U(1)V × U(1)A.

(8)

This is a symmetry of the QCD Lagrangian at the classical level. At the quantum level
the U(1)A symmetry is explicitly broken due to axial anomaly, which is effect of quantum
fluctuations. The U(1)V symmetry is responsible for the baryon number conservation and
will not be discussed any longer.

Now generally if the Hamiltonian of a system is invariant under some transformation
group G, then one can expect that one can find states which are simultaneously eigenstates
of the Hamiltonian and of the Casimir operators of the group, Ci. Now, if the ground state
of the theory, the vacuum, is invariant under the same group, i.e. if for all U ∈ G

U |0〉 = |0〉, (9)

then eigenstates of this Hamiltonian corresponding to excitations above the vacuum can
be grouped into degenerate multiplets corresponding to the particular representations of G.
This mode of symmetry is usually referred to as the Wigner-Weyl mode. Conversely, if (9)
does not hold, the excitations do not generally form degenegerate multiplets in this case.
This situation is called spontaneous symmetry breaking.

If chiral symmetry were realized in the Wigner-Weyl mode, then the excitations would
be grouped into representations of the chiral group. The representations of the chiral group
are discussed in detail in the following sections. The important feature is that the every
representation except the trivial one necessarily implies parity doubling. In other words, for
every baryon with the given quantum numbers and parity, there must exist another baryon
with the same quantum numbers but opposite parity and which must have the same mass.
In the case of mesons the chiral representations combine, e.g. the pions with the f0 mesons,
which should be degenerate. This feature is definitely not observed for the low-lying states
in hadron spectra. This means that Eq. (9) does not apply; the continuous chiral symmetry
of the QCD Lagrangian is spontaneously (dynamically) broken in the vacuum, i.e. it is
hidden. Such a mode of symmetry realization is referred to as the Nambu-Goldstone one.

The independent left and right rotations (6) can be represented equivalently with inde-
pendent isospin and axial rotations

ψ → exp

(

ı
θa

V τ
a

2

)

ψ; ψ → exp

(

ıγ5
θa

Aτ
a

2

)

ψ. (10)

The existence of approximately degenerate isospin multiplets in hadron spectra suggests
that the vacuum is invariant under the isospin transformation. Indeed, from the theoretical
side the Vafa-Witten theorem [13] guarantees that in the local gauge theories the vector
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part of chiral symmetry cannot be spontaneously broken. The axial transformation mixes
states with opposite parity. The fact that the low-lying states do not have parity doublets
implies that the vacuum is not invariant under the axial transformations. In other words
the almost perfect chiral symmetry of the QCD Lagrangian is dynamically broken by the
vacuum down to the vectorial (isospin) subgroup

SU(2)L × SU(2)R → SU(2)I . (11)

The noninvariance of the vacuum with respect to the three axial transformations requires
existence of three massless Goldstone bosons, which should be pseudoscalars and form an
isospin triplet. These are identified with pions. The nonzero mass of pions is entirely due to
the explicit chiral symmetry breaking by the small masses of u and d quarks. These small
masses can be accounted for as a perturbation. As a result the squares of the pion masses
are proportional to the u and d quark masses [11]

m2
π = − 1

f 2
π

mu +md

2
(〈ūu〉 + 〈d̄d〉) +O(m2

u,d). (12)

That the vacuum is not invariant under the axial transformation is directly seen from
the nonzero values of the quark condensates, which are order parameters for spontaneous
chiral symmetry breaking. These condensates are the vacuum expectation values of the
ψ̄ψ = ψ̄LψR + ψ̄RψL operator and at the renormalization scale of 1 GeV they approximately
are

〈ūu〉 ≃ 〈d̄d〉 ≃ −(240 ± 10MeV )3. (13)

The values above are deduced from phenomenological considerations [12]. Lattice gauge
calculations also confirm the nonzero and rather large values for quark condensates. How-
ever, the quark condensates above are not the only order parameters for chiral symmetry
breaking. There exist chiral condensates of higher dimension (vacuum expectation values
of more complicated combinations of ψ̄ and ψ that are not invariant under the axial trans-
formations). Their numerical values are difficult to extract from phenomenological data,
however, and they are still unknown.

To summarize this section. There exists overwhelming evidence that the nearly perfect
chiral symmetry of the QCD Lagrangian is spontaneously broken in the QCD vacuum.
Physically this is because the vacuum state in QCD is highly nontrivial which can be seen
by the condensation in the vacuum state of the chiral pairs. These condensates break the
symmetry of the vacuum with respect to the axial transformations and as a consequence,
there is no parity doubling in the low-lying spectrum. However, as we shall show, the role of
the chiral symmetry breaking quark condensates becomes progressively less important once
we go up in the spectrum, i.e. the chiral symmetry is effectively restored, which should be
evidenced by the systematical appearance of the approximate parity doublets in the highly
lying spectrum. This is the subject of the following sections.
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III. A FEW WORDS ABOUT CHIRAL SYMMETRY BREAKING AND

LOW-LYING HADRONS

A key to understanding of the low-lying hadrons is spontaneous breaking of chiral sym-
metry (SBCS). Hence it is instructive to overview physics of SBCS. An insight into this
phenomenon is best obtained from the pre-QCD Nambu and Jona-Lasinio model [1]. Its
application to such questions as formation of constituent quarks as quasiparticles in the
Bogoliubov sense, their connection to the quark condensate and appearance of the low-lying
collective excitations - Goldstone bosons - was a subject of intensive research for the last
two decades and is reviewed e.g. in Ref. [13]. Actually all microscopical models of SBCS
in QCD, such as based on instantons [14] or other topological configurations, or on nonper-
turbative resummation of gluon exchanges [15], or on assumption that the Lorentz scalar
confining interaction is an origin for SBCS [16], all share the key elements and ideas of the
NJL picture. The only essential difference between all these models is a specification of
those interactions that are responsible for SBCS.

Any interquark interaction in QCD mediated by the intermediate gluon field, in the local
approximation, contains as a part a chiral-invariant 4-fermion interaction

(ψ̄ψ)2 + (ψ̄iγ5~τψ)2. (14)

The first term represents Lorentz-scalar interaction. This interaction is an attraction be-
tween the left-handed quarks and the right-handed antiquarks and vice versa. When it is
treated nonperturbatively in the mean-field approximation, which is well justified in the
vacuum state, it leads to the condensation of the chiral pairs in the vacuum state

〈0|ψ̄ψ|0〉 = 〈0|ψ̄LψR + ψ̄RψL|0〉 6= 0. (15)

Hence it breaks chiral symmetry, which is a nonperturbative phenomenon. This dynamics
is described by the famous gap equation which is similar to the one of Bardeen-Cooper-
Schrieffer theory of superconductivity. This attractive interaction between bare quarks can
be absorbed into a mass of a quasiparticle. This is provided by means of Bogoliubov trans-
formation: Instead of operating with the original bare quarks and antiquarks one introduces
quasiparticles. Each quasiparticle is a coherent superposition of bare quarks and antiquarks.
Bare particles have both well-defined helicity and chirality, while quasiparticles have only
definite helicity and contain a mixture of bare quarks and antiquarks with opposite chirality.
This trick allows us to absorb the initial Lorentz-scalar attractive interaction between the
bare quarks into a mass of the quasiparticles. These quasiparticles with dynamical mass can
be associated with the constituent quarks. An important feature is that this dynamical mass
appears only at low momenta, below the ultraviolet cutoff Λ in the NJL model, i.e. where
the low-momentum attractive interaction between quarks is operative. All quarks with mo-
menta higher than Λ remain undressed. In reality, of course, this step-function behaviour of
the dynamical mass should be substituted by some smooth function. Hence in the vaccum
a system of massless interacting quarks at low momenta can be effectively substituted by
a system of the noninteracting quasiparticles with dynamical mass M . This mechanism of
dynamical symmetry breaking and of creation of quasiparticles with dynamical mass is a
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very general one and persists in different many-fermion systems - from the superconductors
to the atomic nuclei.

π

gluon exchange, or instanton−induced int, or ...
FIG. 2. Pion as a relativistic bound state in the quark-antiquark system.

Once the chiral symmetry is spontaneously broken, then there must appear collective
massless Goldstone excitations. Microscopically their zero mass is provided by the second
term of Eq. (14). This term represents an attraction between the constituent quark and the
antiquark with the pion quantum numbers. Without this term the pion would have a mass
of 2M . When this term is nonperturbatively and relativistically iterated, see Fig. 2, the
attraction between the constituent quarks in the pion exactly compensates the 2M energy
and the pion becomes massless. This happens because of the underlying chiral symmetry
since it is this symmetry dictates that the strengths of the interactions represented by the
first and by the second terms in Eq. (14) are equal. So the pion is a relativistic bound
state of two quasiparticles. It contains Q̄Q, Q̄QQ̄Q, ... Fock components. The pion (as any
Goldstone boson) is a highly collective excitation in terms of the original (bare) quarks and
antiquarks q and q̄ because the quasiparticles Q and Q̄ themselves are coherent collective
excitations of bare quarks.

M M

q 2
1

π

γ5

axial current axial current

FIG. 3. A full axial current in the symmetry broken regime.

Now we will go to the low-lying baryons. A basic ingredient of the chiral quark picture of
Manohar and Georgi [2] is that the constituent quarks inside the nucleon are strongly coupled
to the pion field and this coupling is regulated by the Goldberger-Treiman relation. Why
this should be so can be seen directly from the Nambu and Jona-Lasinio mechanism of chiral
symmetry breaking. In terms of the massless bare quarks the axial current, Aµ = ψ̄γµγ5~τψ,
is conserved, ∂µAµ = 0. If one works in terms of free massive quasiparticles, then it is not
conserved, ∂µAµ = 2iMψ̄γ5~τψ. How to reconcile this? The only solution is that the full
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axial current in the symmetry broken regime (which must be conserved) contains in addition
a term which exactly cancels 2iMψ̄γ5~τψ. It is straightforward to see that this additional
term must represent a process where the axial current creates from the vacuum a massless
pseudoscalar isovector boson and this boson in turn couples to the quasiparticle, see Fig.
3. It is this consideration which forced Nambu to postulate in 1960 an existence of the
Nambu-Goldstone boson in the symmetry broken regime, which must be strongly coupled
to the quasiparticle.

It was suggested in Ref. [17] that in the low-momentum regime (which is responsible for
masses) the low-lying baryons in the u, d, s sector can be approximated as systems of three
confined constituent quarks with the residual interaction mediated by the Goldtone boson
field. Such a model was designed to solve a problem of the low-lying baryon spectroscopy.
Microscopically this residual interaction appears from the t-channel iterations of those glu-
onic interactions in QCD which are responsible for chiral symmetry breaking [18], see Fig.
2. An essential feature of this residual interaction is that it is a flavor- and spin-exchange
interaction of the form

−flavor(i) · flavor(j) spin(i) · spin(j).

This specific form of the residual interaction between valence constituent quarks in baryons
allows us not only to generate octet-decuplet splittings but what is more important to solve
at the same time the long-standing puzzle of the ordering of the lowest excitations of positive
and negative parity in the u, d, s sector. This physics is a subject of intensive lattice studies
and recent results [19–22] do show that the correct ordering is achieved only close to the
chiral limit and hence is related to spontaneous breaking of chiral symmetry. The results
[21] also evidence a node in the wave function of the radial excitation of the nucleon (Roper
resonance) which is consistent with the 3Q leading Fock component of this state.

IV. LOW- AND HIGH-LYING HADRON SPECTRA

If one looks carefully at the nucleon excitation spectrum, see Fig. 4, one immediately
notices regularities for the high-lying states starting approximately from the M ∼ 1.7 GeV
region. Namely the nucleon (and delta) high-lying states show obvious patterns of parity
doubling: The states of the same spin but opposite parity are approximately degenerate.
There are couple of examples where such parity partners have not yet experimentally been
seen. Such doublets are definitely absent in the low-lying spectrum. The high-lying hadron
spectroscopy is a difficult experimental task and the high-lying spectra have never been sys-
tematically explored. However, it is conceptually important to answer a question whether
the parity partners exist systematically or not. If yes, and the existing data hint at it, then it
would mean that some symmetry should be behind this parity doubling and this symmetry
is not operative in the low-lying spectrum. What is this symmetry and why is it active
only in the high-lying part of the spectrum? Clearly, if the parity doubling is systematic,
then it rules out a description of the highly-excited states in terms of the constituent quarks
(it will be discussed in one the following sections). Hence the physics of the low-lying and
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high-lying states is very different.

* * * *

* *

3000

2500

2000 * *

1              3

[MeV]

*
* * *

* *

1500

2
1197 135

2

1000

222222
FIG. 4. Nucleon excitation spectrum. Those states which are not yet established are marked

by ** or * signs according to PDG classification.

It has been suggested some time ago that this parity doubling reflects restoration of
the spontaneously broken chiral symmetry of QCD [3]. We have already discussed in the
previous sections that the underlying chiral symmetry of the QCD Lagrangian would imply,
if the QCD vacuum was trivial, a systematical parity doubling through the whole spectrum.
However, the chiral symmetry of QCD is dynamically broken in the QCD vacuum, which
leads to the appearance of the constituent quarks. The constituent (dynamical) mass of
quarks results from their coupling to the quark condensates of the vacuum. We have also
discussed that a description in terms of the constituent quarks makes sense only at low
momenta. Typical momenta of valence quarks in the low-lying hadrons are below the chiral
symmetry breaking scale, hence the chiral symmetry is broken in the low-lying states. The
idea of Ref. [3] was that the typical momenta of valence quarks in highly excited hadrons
are higher than the chiral symmetry breaking scale and hence these valence quarks decou-
ple from the quark condensates of the QCD vacuum. Consequently the chiral symmetry is
effectively restored in highly excited hadrons.

Clearly, if the chiral symmetry restoration indeed occurs, then it must be seen also in
excited mesons. There are no systematic data on highly excited mesons in PDG. If one uses
results of the recent systematic partial wave analysis of the proton-antiproton annihilation
at LEAR at 1.8 -2.4 GeV, performed by the London-S.Petersburg group [23,24], then once
a careful chiral classification of the states is done [6,7] one clearly sees direct signs of chiral
symmetry restoration, see, e.g., Fig. 5 where π and n̄n = ūu+d̄d√

2
f0 states are shown (which

must be chiral partners in the chiral symmetry restored regime). These facts force us to take
seriously the possibility of chiral symmetry restoration in excited hadrons and also to con-
centrate experimental efforts on the systematical study of highly excited hadrons. Clearly
the results on meson spectroscopy from the p̄p annihilation at LEAR as well as on highly
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excited baryons must be checked and completed at the future facilities like PANDA at GSI
as well as at JPARC and at the existing accelerators like at JLAB, Bonn, SPRING8, BES,
etc. This should be one of the priority tasks.

M (GeV)

1

0
fπ

22

1

FIG. 5. Pion and n̄n = ūu+d̄d√
2

f0 states.

V. CHIRAL SYMMETRY RESTORATION IN EXCITED HADRONS BY

DEFINITION

The systematic approach to the symmetry restoration based on QCD has been formulated
in ref. [4,5]. By definition an effective symmetry restoration means the following. In QCD the
hadrons with the quantum numbers α are created when one applies the local interpolating
field (current) Jα with such quantum numbers on the vacuum |0〉. This interpolating field
contains a combination of valence quark creation operators at some point x. Then all the
hadrons that are created by the given interpolator appear as intermediate states in the
two-point correlator, see Fig. 6,

X0

FIG. 6. Two-point correlator.

Π = ı
∫

d4x eıqx〈0|T{Jα(x)J†
α(0)}|0〉, (16)
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where all possible Lorentz and Dirac indices (specific for a given interpolating field) have
been omitted. Consider two local interpolating fields J1(x) and J2(x) which are connected
by chiral transformation,

J1(x) = UJ2(x)U
†, (17)

where U is an element of the chiral group. Then, if the vacuum was invariant under chiral
group,

U |0〉 = |0〉,
it follows from (16) that the spectra created by the operators J1(x) and J2(x) would be
identical. We know that in QCD one finds

U |0〉 6= |0〉.

As a consequence the spectra of two operators must be in general different. However, it may
happen that the noninvariance of the vacuum becomes unimportant (irrelevant) high in the
spectrum. Then the spectra of both operators become close al large masses (and asymptot-
ically identical). This would mean that chiral symmetry is effectively restored. We stress
that this effective chiral symmetry restoration does not mean that chiral symmetry break-
ing in the vacuum disappears, but only that the role of the quark condensates that break
chiral symmetry in the vacuum becomes progressively less important high in the spectrum
[4,5]. One could say, that the valence quarks in high-lying hadrons decouple from the QCD
vacuum. In order to avoid a confusion with the chiral symmetry restoration in the vacuum
state at high temperature or density one also refers this phenomenon as chiral symmetry
restoration of the second kind.

VI. A SIMPLE PEDAGOGICAL EXAMPLE

It is instructive to consider a very simple quantum mechanical example of symmetry
restoration high in the spectrum. Though there are conceptual differences between the field
theory with spontaneous symmetry breaking and the one-particle quantum mechanics (where
only explicit symmetry breaking is possible), nevertheless this simple example illustrates how
this general phenomenon comes about.

The example we consider is a two-dimensional harmonic oscillator. We choose the har-
monic oscillator only for simplicity; the property that will be discussed below is quite general
one and can be seen in other systems. The Hamiltonian of the system is invariant under
U(2) = SU(2) × U(1) transformations. This symmetry has profound consequences on the
spectrum of the system. The energy levels of this system are trivially found and are given
by

EN,m = (N + 1); m = N,N − 2, N − 4, · · · ,−(N − 2),−N , (18)

where N is the principal quantum number and m is the (two dimensional) angular momen-
tum. As a consequence of the symmetry, the levels are (N + 1)-fold degenerate.
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Now suppose we add to the Hamiltonian a SU(2) symmetry breaking interaction (but
which is still U(1) invariant) of the form

VSB = Aθ(r −R), (19)

where A and R are parameters and θ is the step function. Clearly, VSB is not invariant under
the SU(2) transformation. Thus the SU(2) symmetry is explicitly broken by this additional
interaction, that acts only within a circle of radius R. As a result one would expect that the
eigenenergies will not reflect the degeneracy structure of seen in Eq. (18) if the coefficients
R,A are sufficiently large. Indeed, we have solved numerically for the eigenstates for the
case of A = 4 and R = 1 in dimensionless units and one does not see a multiplet structure
in the low-lying spectrum as can be seen in Fig. 7.

What is interesting for the present context is the high-lying spectrum. In Fig. 7 we have
also plotted the energies between 70 and 74 for a few of the lower m’s. A multiplet structure
is quite evident—to very good approximation the states of different m’s form degenerate
multiplets and, although we have not shown this in the figure these multiplets extend in m
up to m = N .

How does this happen? The symmetry breaking interaction plays a dominant role in the
spectroscopy for small energies. Indeed, at small excitation energies the system is mostly
located at distances where the symmetry breaking interaction acts and where it is dominant.
Hence the low-lying spectrum to a very large extent is motivated by the symmetry breaking
interaction. However, at high excitation energies the system mostly lives at large distances,
where physics is dictated by the unperturbed harmonic oscillator. Hence at higher energies
the spectroscopy reveals the SU(2) symmetry of the two-dimensional harmonic oscillator.

0 2 4
m quantum number

1

2
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0 2 4

0 2 4 6 8
m quantum number

70.5
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72.5
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73.5
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E
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e
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0 2 4 6 8

FIG. 7. The low-lying (left panel) and highly-lying (right panel) spectra of two-dimensional

harmonic oscillator with the SU(2)-breaking term.

VII. THE QUARK-HADRON DUALITY AND CHIRAL SYMMETRY

RESTORATION

A question arises to which extent the chiral symmetry restoration of the second kind
can be theoretically predicted in QCD. There is a heuristic argument that supports this
idea [4,5]. The argument is based on the well controlled behaviour of the two-point function
(16) at the large space-like momenta Q2 = −q2, where the operator product expansion
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(OPE) is valid and where all nonperturbative effects can be absorbed into condensates of
different dimensions [25]. The key point is that all nonperturbative effects of spontaneous
breaking of chiral symmetry at large Q2 are absorbed into quark condensate 〈q̄q〉 and other
quark condensates of higher dimension. However, the contribution of these condensates into
correlation function is regulated by the Wilson coefficients. The latter ones are proportional
to (1/Q2)n, where the index n is determined by the quantum numbers of the current J and
by the dimension of the given quark condensate. The higher dimension, the larger n. It is
important that contributions of all possible chiral noninvariant terms of OPE are suppressed
by inverse powers of Q2, the higher dimension of the condensate, the less important is the
given condensate at large Q2. Hence, at large enough Q2 the two-point correlator becomes
approximately chirally symmetric. At these high Q2 a matching with the perturbative QCD
(where no SBCS) can be done. In other words, though the chiral symmetry is broken in the
vacuum and all chiral noninvariant condensates are not zero, their influence on the correlator
at asymptotically high Q2 vanishes. This is in contrast to the situation of low values of Q2,
where the role of chiral symmetry breaking in the vacuum is crucial. Hence, at Q2 → ∞
one has

ΠJ1
(Q2) − ΠJ2

(Q2) ∼ 1

Qn
, n > 0 , (20)

where J1 and J2 are interpolators which are connected by the chiral transformation accord-
ing to (17).

Now we can use causality of the local field theory and hence analyticity of the two-point
function. Then we can invoke into analysis a dispersion relation,

ΠJ (Q2) =
∫

ds
ρJ (s)

Q2 + s− iǫ
, (21)

where the spectral density ρJ(s) is defined as

ρJ(s) ≡ 1

π
Im (Πj(s)) . (22)

The integration in this equation is performed along the cut in Fig. 8. Since the large Q2

asymptotics of the correlator is given by the leading term of the perturbation theory, then
the asymptotics of ρ(s) at s → ∞ must also be given by the same term of the perturba-
tion theory if the spectral density approaches a constant value (if it oscillates, then it must
oscillate around the perturbation theory value). Hence both spectral densities ρJ1

(s) and
ρJ2

(s) at s → ∞ must approach the same value and the spectral function becomes chirally
symmetric. This theoretical expectation, that the high s asymptotics of the spectral func-
tion is well described by the leading term of the perturbation theory has been tested e.g. in
the process e+e− → hadrons , where the interpolator is given by the usual electromagnetic
vector current. This process is described in standard texts on QCD, for the recent data
see [26]. Similarly, the vector and the axial vector spectral densities must coincide in the
chiral symmetry restored regime. They have been measured in the τ decay by the ALEPH
and OPAL collaborations at CERN [27,28]. It is well seen from the results that while the
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difference between both spectral densities is large at the masses of ρ(770) and a1(1260), it
becomes strongly reduced towards m =

√
s ∼ 1.7 GeV.

While the argument above about chiral symmetry restoration in the spectral density is
rather general and can be believed to be experimentally established, strictly speaking it
does not necessarily imply that the high lying hadron resonances must form chiral multi-
plets. The reason is that the approximate equility of two spectral densities would necessarily
imply hadron chiral multiplets only if the spectrum was discrete. In reality, however, the
high-lying hadrons are rather wide overlapping resonances. In addition, it is only completely
continuous non-resonant spectrum that is described by the chiral invariant leading term of
perturbation theory. Nevertheless, it is indeed reasonable to assume that the spectrum is
still quasidiscrete in the transition region

√
s ≥ 1.7 GeV where one approaches the chiral

invariant regime. If so in this region the observed hadrons should fall into approximate
chiral multiplets.

The question arises then what is the functional behaviour that determines approaching
the chiral-invariant regime at large s? Naively one would expect that the operator product
expansion of the two-point correlator, which is valid in the deep Euclidean domain, could
help us. This is not so, however, for two reasons. First of all, we know phenomenologically
only the lowest dimension quark condensate. Even though this condensate dominates as a
chiral symmetry breaking measure at the very large space-like Q2, at smaller Q2 the higher
dimensional condensates, which are suppressed by inverse powers of Q2, are also important.
These condensates are not known, unfortunately. But even if we knew all quark condensates
up to a rather high dimension, it would not help us. This is because the OPE is only an
asymptotic expansion [29]. While such kind of expansion is very useful in the space-like
region, it does not define any analytical solution which could be continued to the time-like
region at finite s. While convergence of the OPE can be improved by means of the Borel
transform and it makes it useful for SVZ sum rules for the low-lying hadrons, this cannot be
done for the higher states. So in order to estimate chiral symmetry restoration effects one
indeed needs a microscopic theory that would incorporate at the same time chiral symmetry
breaking and confinement.

Re q  = s

Im q

2

2
physical  pointsOPE is valid

FIG. 8. The two-point correlator in the complex q2 plain.
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VIII. CHIRAL MULTIPLETS OF EXCITED MESONS

Here we limit ourselves to the two-flavor version of QCD. There are two reasons for doing
this. First of all, the u and d quark masses are very small as compared to ΛQCD. Thus the
chiral SU(2)L × SU(2)R and more generally the U(2)L × U(2)R symmetries of the QCD
Lagrangian are nearly perfect. This is not the case if the s quark is included, and a priori
it is not clear whether one should regard this quark as light or ”heavy”. The second reason
is a practical one – there are good new data on highly excited u, d mesons observed in p̄p
annihilation [23,24], but such data are still missing for the strange mesons. Certainly it
would be very interesting and important to extend the analysis to the U(3)L × U(3)R case.
One hopes that the present results will stimulate the experimental and theoretical activity
in this direction.

Mesons reported in Ref. [23,24] are obtained in p̄p annihilations, hence according to OZI
rule we have to expect them to be q̄q states with u and d valence quark content. Hence we
will consider

U(2)L × U(2)R = SU(2)L × SU(2)R × U(1)V × U(1)A, (23)

the full chiral group of the QCD Lagrangian. In the following chiral symmetry will refer to
specifically the SU(2)L × SU(2)R symmetry.

The irreducible representations of this group can be specified by the isospins of the left-
handed and right-handed quarks, (IL, IR). The total isospin of the state can be obtained from
the left- and right-handed isospins according to the standard angular momentum addition
rules

I = |IL − IR|, ..., IL + IR. (24)

All hadronic states are characterised by a definite parity. However, not all irreducible
representations of the chiral group are invariant under parity. Indeed, parity transforms the
left-handed quarks into the right-handed ones and vice versa. Hence while representations
with IL = IR are invariant under parity (i.e. under parity operation every state in the
representation transforms into the state of opposite parity within the same representation),
this is not true for the case IL 6= IR. In the latter case parity transforms every state in the
representation (IL, IR) into the state in the representation (IR, IL). We can construct definite
parity states only combining basis vectors from both these irreducible representations. Hence
it is only the direct sum of these two representations

(IL, IR) ⊕ (IR, IL), IL 6= IR, (25)

that is invariant under parity. This reducible representation of the chiral group is an irre-
ducible representation of the larger group, the parity-chiral group

SU(2)L × SU(2)R × Ci, (26)
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where the group Ci consists of two elements: identity and inversion in 3-dimensional space.2

This symmetry group is the symmetry of the QCD Lagrangian (neglecting quark masses),
however only its subgroup SU(2)I ×Ci survives in the broken symmetry mode. The dimen-
sion of the representation (25) is

dim(Ia,Ib)⊕(Ib,Ia) = 2(2Ia + 1)(2Ib + 1). (27)

When we consider mesons of isospin I = 0, 1, only three types of irreducible representa-
tions of the parity-chiral group exist.

(i) (0,0). Mesons in this representation must have isospin I = 0. At the same
time IR = IL = 0. This can be achieved when either there are no valence quarks in the
meson3, or both valence quark and antiquark are right or left. If we denote R = (uR, dR)
and L = (uL, dL), then the basis states of both parities can be written as

|(0, 0);±; J〉 =
1√
2
(R̄R± L̄L)J . (28)

Note that such a system can have spin J ≥ 1. Indeed, valence quark and antiquark in the
state (28) have definite helicities, because generically helicity = +chirality for quarks and
helicity = -chirality for antiquarks. Hence the total spin projection of the quark-antiquark
system onto the momentum direction of the quark is ±1. The parity transformation property
of the quark-antiquark state is then regulated by the total spin of the system [37]

P̂ |(0, 0);±; J〉 = ±(−1)J |(0, 0);±; J〉. (29)

(ii) (1/2,1/2). In this case the quark must be right and the antiquark must be left,
and vice versa. These representations combine states with I=0 and I=1, which must be of
opposite parity. The basis states within the two distinct representations (denoted as ”a”
and ”b”, respectively) of this type are

|(1/2, 1/2)a; +; I = 0; J〉 =
1√
2
(R̄L+ L̄R)J , (30)

|(1/2, 1/2)a;−; I = 1; J〉 =
1√
2
(R̄~τL− L̄~τR)J , (31)

2In the literature language is sometimes used in a sloppy way and the representation (25) is

referred to erroneously as an irreducible representation of the chiral group.

3Hence glueballs must be classified according to this representation [30]; with no quark content

this representation contains the state of only one parity.
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and

|(1/2, 1/2)b;−; I = 0; J〉 =
1√
2
(R̄L− L̄R)J , (32)

|(1/2, 1/2)b; +; I = 1; J〉 =
1√
2
(R̄~τL+ L̄~τR)J . (33)

In these expressions ~τ are isospin Pauli matrices. The parity of every state in the represen-
tation is determined as

P̂ |(1/2, 1/2);±; I; J〉 = ±(−1)J |(1/2, 1/2);±; I; J〉. (34)

The mesons in the representations of this type can have any spin. Note that the two
distinct (1/2, 1/2)a and (1/2, 1/2)b irreducible representations of SU(2)L×SU(2)R form one
irreducible representation of U(2)L × U(2)R.

(iii) (0,1)⊕(1,0). The total isospin is 1 and the quark and antiquark must both be
right or left. This representation is possible only for J ≥ 1. The basis states are

|(0, 1) + (1, 0);±; J〉 =
1√
2
(R̄~τR± L̄~τL)J (35)

with parities

P̂ |(0, 1) + (1, 0);±; J〉 = ±(−1)J |(0, 1) + (1, 0);±; J〉. (36)

In the chirally restored regime the physical states must fill out completely some or all
of these representations. We have to stress that the usual quantum numbers I, JPC are not
enough to specify the chiral representation for J ≥ 1. It happens that some of the physical
particles with the given I, JPC belong to one chiral representation (multiplet), while the
other particles with the same I, JPC belong to the other multiplet. Classification of the
particles according to I, JPC is simply not complete in the chirally restored regime. This
property will have very important implications as far as the amount of the states with the
given I, JPC is concerned.

In order to make this point clear, we will discuss some of the examples. Consider first
the mesons of spin J = 0, which are π, f0, a0 and η mesons with the u, d quark content only.
The interpolating fields are given as

Jπ(x) = q̄(x)~τıγ5q(x), (37)

Jf0
(x) = q̄(x)q(x), (38)

Jη(x) = q̄(x)ıγ5q(x), (39)
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Ja0
(x) = q̄(x)~τq(x). (40)

These four currents belong to the irreducible representation of the U(2)L × U(2)R =
SU(2)L × SU(2)R ×U(1)V ×U(1)A group. It is instructive to see how these currents trans-
form under different subgroups of the group above.

The SU(2)L × SU(2)R transformations consist of vectorial and axial transformations in
the isospin space (10). The axial transformations mix the currents of opposite parity:

Jπ(x) ↔ Jf0
(x) (41)

as well as

Ja0
(x) ↔ Jη(x). (42)

The currents (41) form the basis of the (1/2, 1/2)a representation of the parity-chiral group,
while the interpolators (42) transform as (1/2, 1/2)b.

The U(1)A transformation (4) mixes the currents of the same isospin but opposite parity:

Jπ(x) ↔ Ja0
(x) (43)

as well as

Jf0
(x) ↔ Jη(x). (44)

All four currents together belong to the representation (1/2, 1/2)a ⊕ (1/2, 1/2)b which is an
irreducible representation of the U(2)L × U(2)R group.

If the vacuum were invariant with respect to U(2)L × U(2)R transformations, then
all four mesons, π, f0, a0 and η would be degenerate (as well as all their excited states).
Once the U(1)A symmetry is broken explicitly through the axial anomaly, but the chiral
SU(2)L × SU(2)R symmetry is still intact in the vacuum, then the spectrum would consist
of degenerate (π, f0) and (a0, η) pairs. If in addition the chiral SU(2)L × SU(2)R symmetry
is spontaneously broken in the vacuum, the degeneracy is also lifted in the pairs above and
the pion becomes a (pseudo)Goldstone boson. Indeed, the masses of the lowest mesons are
[38]4

mπ ≃ 140MeV, mf0
≃ 400 − 1200MeV, ma0

≃ 985MeV, mη ≃ 782MeV.

This immediately shows that both SU(2)L × SU(2)R and U(1)V × U(1)A are broken in the
QCD vacuum to SU(2)I and U(1)V , respectively.

4The η meson mass given here was obtained by unmixing the SU(3) flavor octet and singlet states

so it represents the pure n̄n = (ūu + d̄d)/
√

2 state, see for details ref. [6].

18



If one looks at the upper part of the spectrum, then one notices that the four successive
highly excited π mesons and the corresponding n̄n f0 mesons form approximate chiral pairs
[6]. This is well seen from the Fig. 5. This pattern is a clear manifestation of the chiral
symmetry restoration. However, given the importance of this statement these highly excited
π and f0 mesons must be reconfirmed in other kind of experiments.
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FIG. 9. Radial Regge trajectories for the four successive high-lying J = 0 mesons.

A similar behaviour is observed from a comparison of the a0 and η masses [6]. However,
there are two missing a0 mesons which must be discovered in order to complete all chiral
multiplets. (Technically the identification of the spinless states from the partial wave analy-
sis is a rather difficult task). There is a little doubt that these missing a0 mesons do exist. If
one puts the four high-lying π, n̄n f0, a0 and n̄n η mesons on the radial Regge trajectories,
see Fig. 9, one clearly notices that the two missing a0 mesons lie on the linear trajectory
with the same slope as all other mesons [23,24]. If one reconstructs these missing a0 mesons
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according to this slope, then a pattern of the a0 − η chiral partners appears, similar to the
one for the π and f0 mesons.

For the J ≥ 1 mesons the classification is a bit more complicated. Consider ρ(1, 1−−)
mesons as example. Particles of this kind can be created from the vacuum by the vector
current, ψ̄γµ~τψ. Its chiral partner is the axial vector current, ψ̄γµγ5~τψ, which creates from
the vacuum the axial vector mesons, a1(1, 1

++) . Both these currents belong to the represen-
tation (0,1)+(1,0) and have the right-right ± left-left quark content. Clearly, in the chirally
restored regime the mesons created by these currents must be degenerate level by level and
fill out the (0,1)+(1,0) representations. Hence, naively the amount of ρ and a1 mesons high
in the spectrum should be equal. This is not correct, however. ρ-Mesons can be also created
from the vacuum by other type(s) of current(s), ψ̄σ0i~τψ (or by ψ̄∂µ~τψ). These interpolators
belong to the (1/2,1/2) representation and have the left-right ± right-left quark content. In
the regime where chiral symmetry is strongly broken (as in the low-lying states) the phys-
ical states are mixtures of different representations. Hence these low-lying states are well
coupled to both (0,1)+(1,0) and (1/2,1/2) interpolators. However, when chiral symmetry is
(approximately) restored, then each physical state must be strongly dominated by the given
representation and hence will couple only to the interpolator which belongs to the same
representation. This means that ρ-mesons created by two distinct currents in the chirally
restored regime represent physically different particles. The chiral partner of the ψ̄σ0i~τψ (or
ψ̄∂µ~τψ) current is εijkψ̄σjkψ ( ψ̄γ5∂µψ, respectively) 5. The latter interpolators create from
the vacuum h1(0, 1

+−) states. Hence in the chirally restored regime, some of the ρ-mesons
must be degenerate with the a1 mesons ((0,1)+(1,0) multiplets), but the others - with the
h1 mesons ((1/2,1/2) multiplets)6. Consequently, high in the spectra the combined amount
of a1 and h1 mesons must coincide with the amount of ρ-mesons. This is a highly nontrivial
prediction of chiral symmetry.

Actually it is a very typical situation. Consider f2(0, 2
++) mesons as another example.

They can be interpolated by the tensor field ψ̄γµ∂νψ (properly symmetrised, of course),
which belongs to the (0,0) representation. Their chiral partners are ω2(0, 2

−−) mesons,
which are created by the ψ̄γ5γµ∂νψ interpolator. On the other hand f2(0, 2

++) mesons can
also be created from the vacuum by the ψ̄∂µ∂νψ type of interpolator, which belongs to the
(1/2,1/2) representation. Its chiral partner is ψ̄γ5∂µ∂ν~τψ, which creates π2(1, 2

−+) mesons.
Hence in the chirally restored regime we have to expect ω2(0, 2

−−) mesons to be degenerate
systematically with some of the f2(0, 2

++) mesons ((0,0) representations) while π2(1, 2
−+)

mesons must be degenerate with other f2(0, 2
++) mesons (forming (1/2,1/2) multiplets).

Hence the total number of ω2(0, 2
−−) and π2(1, 2

−+) mesons in the chirally restored regime
must coincide with the amount of f2(0, 2

++) mesons.

5Chiral transformation properties of some interpolators can be found in ref. [31].

6Those ρ(1, 1−−) and ω(0, 1−−) mesons which belong to (1/2,1/2) cannot be seen in e+e− →
hadrons.
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These examples can be generalized to mesons of any spin J ≥ 1. Those inter-
polators which contain only derivatives ψ̄∂µ∂ν ...ψ ( ψ̄~τ∂µ∂ν ...ψ) have quantum num-
bers I = 0, P = (−1)J , C = (−1)J (I = 1, P = (−1)J , C = (−1)J) and transform
as (1/2,1/2). Their chiral partners are ψ̄~τγ5∂µ∂ν ...ψ ( ψ̄γ5∂µ∂ν ...ψ, respectively) with
I = 1, P = (−1)J+1, C = (−1)J (I = 0, P = (−1)J+1, C = (−1)J , respectively). However,
interpolators with the same I, JPC can be also obtained with one γη matrix instead one of the
derivatives, ∂η: ψ̄∂µ∂ν ...γη...ψ ( ψ̄~τ∂µ∂ν ...γη...ψ). These latter interpolators belong to (0,0)
((0,1)+(1,0)) representation. Their chiral partners are ψ̄γ5∂µ∂ν ...γη...ψ ( ψ̄~τγ5∂µ∂ν ...γη...ψ)
which have I = 0, P = (−1)J+1, C = (−1)J+1 (I = 1, P = (−1)J+1, C = (−1)J+1). Hence
in the chirally restored regime the physical states created by these different types of inter-
polators will belong to different representations and will be distinct particles while having
the same I, JPC . One needs to indicate chiral representation in addition to usual quantum
numbers I, JPC in order to uniquely specify physical states of the J ≥ 1 mesons in the
chirally restored regime.

The available data for the J = 1, 2, 3 mesons are systematized in Ref. [7]. Below we show
the chiral patterns for the J = 2 mesons, where the data set seems to be complete.

(0,0)
ω2(0, 2

−−) f2(0, 2
++)

1975 ± 20 1934 ± 20
2195 ± 30 2240 ± 15

(1/2,1/2)
π2(1, 2

−+) f2(0, 2
++)

2005 ± 15 2001 ± 10
2245 ± 60 2293 ± 13

(1/2,1/2)
a2(1, 2

++) η2(0, 2
−+)

2030 ± 20 2030 ± ?
2255 ± 20 2267 ± 14

(0,1)+(1,0)
a2(1, 2

++) ρ2(1, 2
−−)

1950+30
−70 1940 ± 40

2175 ± 40 2225 ± 35

We see systematic patterns of chiral symmetry restoration. In particular, the amount of
f2(0, 2

++) mesons coincides with the combined amount of ω2(0, 2
−−) and π2(1, 2

−+) states.
Similarly, number of a2(1, 2

++) states is the same as number of η2(0, 2
−+) and ρ2(1, 2

−−)
together. All chiral multiplets are complete. While masses of some of the states can and
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will be corrected in the future experiments, if new states might be discovered in this energy
region in other types of experiments, they should be either s̄s states or glueballs.

The data sets for the J = 1 and J = 3 mesons are less complete and there are a few
missing states to be discovered [7]. Nevertheless, these spectra also offer an impressive pat-
terns of chiral symmetry.

It is important to see whether there are also signatures of the U(1)A restoration. This can
happen if two conditions are fulfilled [4]: (i) unimportance of the axial anomaly in excited
states, (ii) chiral SU(2)L ×SU(2)R restoration (i.e. unimportance of the quark condensates
which break simultaneously both types of symmetries in the vacuum state). Some evidence
for the U(1)A restoration has been reported in ref. [3] on the basis of J = 0 data. Yet missing
a0 states have to be discovered to complete the U(1)A multiplets in the J = 0 spectra. In
this section we will demonstrate that the data on e.g. J = 2 mesons present convincing
evidence on U(1)A restoration.

First, we have to consider which mesonic states can be expected to be U(1)A part-
ners. The U(1)A transformation connects interpolators of the same isospin but opposite
parity. But not all such interpolators can be connected by the U(1)A transformation. For
instance, the vector currents ψ̄γµψ and ψ̄~τγµψ are invariant under U(1)A. Similarly, the ax-
ial vector interpolators ψ̄γ5γµψ and ψ̄~τγ5γµψ are also invariant under U(1)A. Hence those
interpolators (states) that are members of the (0, 0) and (0, 1) + (1, 0) representations of
SU(2)L ×SU(2)R are invariant with respect to U(1)A. However, interpolators (states) from
the distinct (1/2,1/2) representations which have the same isospin but opposite parity trans-
form into each other under U(1)A. For example, ψ̄ψ ↔ ψ̄γ5ψ, ψ̄~τψ ↔ ψ̄~τγ5ψ, and those
with derivatives: ψ̄∂µψ ↔ ψ̄γ5∂µψ, ψ̄~τ∂µψ ↔ ψ̄~τγ5∂µψ, etc. If the corresponding states
are systematically degenerate, then it is a signal that U(1)A is restored. In what follows we
show that it is indeed the case.

f2(0, 2
++) η2(0, 2

−+)

2001 ± 10 2030 ± ?
2293 ± 13 2267 ± 14

π2(1, 2
−+) a2(1, 2

++)

2005 ± 15 2030 ± 20
2245 ± 60 2255 ± 20

We see clear approximate doublets of U(1)A restoration. Hence two distinct (1/2,1/2)
multiplets of SU(2)L × SU(2)R can be combined into one multiplet of U(2)L × U(2)R. So
we conclude that the whole chiral symmetry of the QCD Lagrangian U(2)L × U(2)R gets
approximately restored high in the hadron spectrum.

It is useful to quantify the effect of chiral symmetry breaking (restoration). An obvious
parameter that characterises effects of chiral symmetry breaking is a relative mass splitting
within the chiral multiplet. Let us define the chiral asymmetry as
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χ =
|M1 −M2|
(M1 +M2)

, (45)

where M1 and M2 are masses of particles within the same multiplet. This parameter gives a
quantitative measure of chiral symmetry breaking at the leading (linear) order and has the
interpretation of the part of the hadron mass due to chiral symmetry breaking.

For the low-lying states the chiral asymmetry is typically 0.2 - 0.6 which can be seen
e.g. from a comparison of the ρ(770) and a1(1260) or the ρ(770) and h1(1170) masses. If
the chiral asymmetry is large as above, then it makes no sense to assign a given hadron
to the chiral multiplet since its wave function is a strong mixture of different representa-
tions and we have to expect also large nonlinear symmetry breaking effects. However, at
meson masses about 2 GeV the chiral asymmetry is typically within 0.01 and in this case
the hadrons can be believed to be members of multiplets with a tiny admixture of other
representations. Unfortunately there are no systematic data on mesons below 1.9 GeV and
hence it is difficult to estimate the chiral asymmetry as a function of mass (

√
s). Such a

function would be crucially important for a further progress of the theory. So a systematic
experimental study of hadron spectra is difficult to overestimate. However, thanks to the
0++ glueball search for the last 20 years, there are such data for π and f0 states, as can be
seen from Fig. 5 (for details we refer to [6,30]). According to these data we can reconstruct
χ(
√
s ∼ 1.3GeV ) ∼ 0.03 ÷ 0.1, χ(

√
s ∼ 1.8GeV ) ∼ 0.008, χ(

√
s ∼ 2.3GeV ) ∼ 0.005. We

have to also stress that there is no reason to expect the chiral asymmetry to be a universal
function for all hadron channels. Hadrons with different quantum numbers feel chiral sym-
metry breaking effects differently, as can be deduced from the operator product expansions
of two-point functions for different currents. A task of the theory is to derive these chiral
asymmetries microscopically.

IX. CHIRAL MULTIPLETS OF EXCITED BARYONS

Now we will consider chiral multiplets of excited baryons [4,5]. The nucleon or delta
states have a half integral isospin. Then such a multiplet cannot be an irreducible represen-
tation of the chiral group (IL, IR) with IL = IR, because in this case the total isospin can
only be integral. Hence the minimal possible representation that is invariant under parity
transformation is the one of (25). Empirically, there are no known baryon resonances within
the two light flavors sector which have an isospin greater than 3/2. Thus we have a constraint
from the data that if chiral symmetry is effectively restored for very highly excited baryons,
the only possible representations for the observed baryons have IL + IR ≤ 3/2, i.e. the
only possible representations are (1/2, 0)⊕ (0, 1/2), (1/2, 1)⊕ (1, 1/2) and (3/2, 0)⊕ (0, 3/2).
Since chiral symmetry and parity do not constrain the possible spins of the states these
multiplets can correspond to states of any fixed spin.

The same classification can actually be obtained assuming that chiral properties of ex-
cited baryons are determined by three massless valence quarks which have a definite chirality.
Indeed the one quark field transforms as
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q ∼
(

1

2
, 0
)

⊕
(

0,
1

2

)

. (46)

Then all possible representations for the three-quark baryons in the chirally restored phase
can be obtained as a direct product of three ”fundamental” representations (46). Using
the standard isospin coupling rules separately for the left and right quark components, one
easily obtains a decomposition of this direct product

[(

1

2
, 0
)

⊕
(

0,
1

2

)]3

=
[(

3

2
, 0
)

⊕
(

0,
3

2

)]

+3
[(

1,
1

2

)

⊕
(

1

2
, 1
)]

+ 3
[(

0,
1

2

)

⊕
(

1

2
, 0
)]

+ 2
[(

1

2
, 0
)

⊕
(

0,
1

2

)]

. (47)

The last two representations in the expansion above are identical group-theoretically, so
they can be combined with the common multiplicity factor 5. Thus, according to the
simple-minded model above, baryons in the chirally restored regime will belong to one of
the following representations:

(

1

2
, 0
)

⊕
(

0,
1

2

)

;
(

3

2
, 0
)

⊕
(

0,
3

2

)

;
(

1

2
, 1
)

⊕
(

1,
1

2

)

. (48)

The (1/2, 0)⊕(0, 1/2) multiplets contain only isospin 1/2 states and hence correspond to
parity doublets of nucleon states (of any fixed spin).7 Similarly, (3/2, 0)⊕ (0, 3/2) multiplets
contain only isospin 3/2 states and hence correspond to parity doublets of ∆ states (of any
fixed spin).8 However, (1/2, 1) ⊕ (1, 1/2) multiplets contain both isospin 1/2 and isospin
3/2 states and hence correspond to multiplets containing both nucleon and ∆ states of both
parities and any fixed spin.9

Summarizing, the phenomenological consequence of the effective restoration of chiral
symmetry high in N and ∆ spectra is that the baryon states will fill out the irreducible
representations of the parity-chiral group (26). If (1/2, 0) ⊕ (0, 1/2) and (3/2, 0) ⊕ (0, 3/2)
multiplets were realized in nature, then the spectra of highly excited nucleons and deltas
would consist of parity doublets. However, the energy of the parity doublet with given spin
in the nucleon spectrum a-priori would not be degenerate with the the doublet with the
same spin in the delta spectrum; these doublets would belong to different representations of
eq. (26), i.e. to distinct multiplets and their energies are not related. On the other hand,
if (1/2, 1)⊕ (1, 1/2) were realized, then the highly lying states in N and ∆ spectrum would

7If one distinguishes nucleon states with different electric charge, i.e. different isospin projection,

then this “doublet” is actually a quartet.

8Again, keeping in mind different charge states of delta resonance it is actually an octet.

9This representation is a 12-plet once we distinguish between different charge states.
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have a N parity doublet and a ∆ parity doublet with the same spin and which are degenerate
in mass. In either of cases the highly lying spectrum must systematically consist of parity
doublets.

If one looks carefully at the nucleon spectrum, see Fig. 4, and the delta spectrum one
notices that the systematic parity doubling in the nucleon spectrum appears at masses of
1.7 GeV and above, while the parity doublets in the delta spectrum insist at masses of 1.9
GeV.10 This fact implies that at least those nucleon doublets that are seen at ∼ 1.7GeV
belong to (1/2, 0)⊕ (0, 1/2) representation. Below we show doublets of different spin in the
energy range of 1.9 GeV and higher:

J =
1

2
: N+(2100) (∗), N−(2090) (∗), ∆+(1910) , ∆−(1900)(∗∗);

J =
3

2
: N+(1900)(∗∗), N−(2080)(∗∗), ∆+(1920) , ∆−(1940) (∗);

J =
5

2
: N+(2000)(∗∗), N−(2200)(∗∗), ∆+(1905) , ∆−(1930) ;

J =
7

2
: N+(1990)(∗∗), N−(2190) , ∆+(1950) , ∆−(2200) (∗);

J =
9

2
: N+(2220) , N−(2250) , ∆+(2300)(∗∗), ∆−(2400)(∗∗);

J =
11

2
: ? , N−(2600) , ∆+(2420) , ? ;

J =
13

2
: N+(2700)(∗∗), ? , ? , ∆−(2750)(∗∗);

J =
15

2
: ? , ? , ∆+(2950)(∗∗), ? .

If approximate mass degeneracy between N and ∆ doublets at M ≥ 1.9 GeV is acciden-
tal, then the baryons in this mass region are organized according to (1/2, 0) ⊕ (0, 1/2) for
N and (3/2, 0) ⊕ (0, 3/2) for ∆ parity-chiral doublets. If not, then the high lying spectrum
forms (1/2, 1)⊕(1, 1/2) multiplets. It can also be possible that in the narrow energy interval
more than one parity doublet in the nucleon and delta spectra is found for a given spin.
This would then mean that different doublets belong to different parity-chiral multiplets.
Systematic experimental exploration of the high-lying states is required in order to assign
unambiguously baryons to the multiplets.

10This means that the parity doubling in both cases is seen at approximately the same excitation

energy with respect to the corresponding ground state.
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X. CAN SIMPLE POTENTIAL MODELS EXPLAIN PARITY DOUBLING?

Before discussing a model for highly excited hadrons that is compatible with the chiral
symmetry restoration and parity doubling it is useful to answer a question whether the
potential models like the traditional constituent quark model can explain it. Consider first
mesons. Within the potential model the mesons are considered to be systems of two con-
stituent quarks which interact via linear confinemet potential plus some perturbation from
the one gluon exchange [32] or instanton induced interaction [33]. Within the potential
description the parity of the state is unambiguously prescribed by the relative orbital angu-
lar momentum L of the constituent quarks. For example, all the states on the radial pion
Regge tragectory, see Fig. 9, are 1S0 Q̄Q states, while the members of the f0 trajectory are
the 3P0 states. Hence the centrifugal repulsion for the states of opposite parity is different.
Then it is clear that such a model cannot explain a systematic approximate degeneracy of
the states of opposite parity. A fine tuning of the perturbation can in principle provide an
accidental degeneracy of some of the states, but then there will be no one-to-one pairing and
degeneracy for the other states. As a consequence the potential models of mesons cannot
accomodate a lot of experimentally observed highly excited mesons. For example, while the
parameters within the model of ref. [32] are fitted to describe the two lowest pion states
and it still can accomodate the third radial state of the pion, it does not predict at all the
existence of π(2070) and π(2360); the fourth and the fifth radial states of the pion do not
appear in this picture up to 2.4 GeV. A similar situation occurs also in other channels. The
failure of the potential description is inherently related to the fact that it cannot incorporate
chiral symmetry restoration as a matter of principle. The latter phenomenon is intrinsically
a relativistic phenomenon which is a consequence of the fact that the ultrarelativistic va-
lence quarks in the highly excited hadrons must necessarily be chiral (i.e. they have definite
helicity and chirality). It is a generic property of the ultrarelativistic fermions which cannot
be simulated within the 2S+1LJ type potential description.

If one uses instead a relativistic description within the Dirac or Bethe-Salpeter equations
frameworks, then the parity doubling and chiral symmetry restoration is incompatible with
the Lorentz scalar potential which is often used to simulate confinement. The reason is
that the Lorentz scalar potential manifestly breaks chiral symmetry and is equivalent to
introduction of some effective mass which increases with the excitation and size of hadrons.
With the Lorentz vector confining potential and assuming that there is no constituent mass
of quarks one can obtain parity doubling [34].

A few comments about the parity doubling within the potential models that attempt
to describe the highly lying baryons are in order. The models that rely on confinement
potential cannot explain an appearance of the systematic parity doublets. This is apparent
for the harmonic confinement. The parity of the state is determined by the number N of the
harmonic excitation quanta in the 3q state. The ground states (N=0) are of positive parity,
all baryons from the N = 1 band are of negative parity, baryons from the N = 2 band
have a positive parity irrespective of their angular momentum, etc. However, the number
of states in the given band rapidly increases with N . This means that such a model cannot
provide an equal amount of positive and negative parity states, which is necessary for parity
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doubling, irrespective of other residual interactions between quarks in such a model. Similar
problem persists with the linear confinement in the 3q system.

While all vacancies from the N = 0 and N = 1 bands are filled in nature, such a model,
extrapolated to the N=3 and higher bands predicts a very big amount of states, which are
not observed (the so-called missing resonance problem). The chiral restoration transition
takes place at excitation energies typical for the highest states in the N = 2 band and in
the N = 3 bands. If correct, it would mean that description of baryons in this transition
region in terms of constituent quarks becomes inappropriate.

The model that relies on the pure color Coulomb interaction between quarks also cannot
provide the systematical parity doubling. While it gives an equal amount of the positive and
negative parity single quark states in the n = 2, 4, ... bands (e.g. 2s−2p, or 4s−4p, 4d−4f),
the number of the positive parity states is always bigger in the n = 1, 3, 5, ... bands.

XI. CHIRAL SYMMETRY RESTORATION AND THE STRING (FLUX TUBE)

PICTURE

A question arises what is a microscopical mechanism of chiral symmetry restoration in
excited hadrons and what is a relevant physical picture? We have already mentioned before
that a possible scenario is related to the fact that at large space-like momenta the dynamical
(constituent) mass of quarks must vanish. If in the highly excited hadrons the momenta of
valence quarks are indeed large, then the effects of spontaneous breaking of chiral symmetry
should be irrelevant in such hadrons [3,35].

Here we will discuss a possible fundamental origin for this phenomenon. We will show
below that both chiral and U(1)A restorations can be anticipated as a direct consequence of
the semiclasical regime in the highly excited hadrons.

At large n (radial quantum number) or at large angular momentum L we know that
in quantum systems the semiclassical approximation (WKB) must work. Physically this
approximation applies in these cases because the de Broglie wavelength of particles in the
system is small in comparison with the scale that characterizes the given problem. In such
a system as a hadron the scale is given by the hadron size while the wavelength of valence
quarks is given by their momenta. Once we go high in the spectrum the size of hadrons
increases as well as the typical momentum of valence quarks. This is why a highly excited
hadron can be described semiclassically in terms of the underlying quark degrees of freedom.

A physical content of the semiclassical approximation is most transparently given by the
path integral. The contribution of the given path to the path integral is regulated by the
action S(q) along the path q(x, t)

∼ eiS(q)/h̄. (49)
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The semiclassical approximation applies when S(q) ≫ h̄. In this case the whole amplitude
(path integral) is dominated by the classical path qcl (stationary point) and those paths that
are infinitesimally close to the classical path. All other paths that differ from the classical
one by an appreciable amount do not contribute. These latter paths would represent the
quantum fluctuation effects. In other words, in the semiclassical case the quantum fluctua-
tions effects are strongly suppressed and vanish asymptotically.

The U(1)A symmetry of the QCD Lagrangian is broken only due to the quantum fluctu-
ations of the fermions. The SU(2)R×SU(2)L spontaneous (dynamical) breaking is also pure
quantum effect and is based upon quantum fluctuations. To see the latter we remind the
reader that most generally the chiral symmetry breaking (i.e.the dynamical quark mass gen-
eration) is formulated via the Schwinger-Dyson (gap) equation. It is not yet clear at all which
specific gluonic interactions are the most important ones as a kernel of the Schwinger-Dyson
equation (e.g. instantons 11 , or gluonic exchanges, or perhaps other gluonic interactions, or
a combination of different interactions). But in any case the quantum fluctuations effects of
the quark fields are very strong in the low-lying hadrons and induce both chiral and U(1)A

breakings. As a consequence we do not observe any chiral or U(1)A multiplets low in the
spectrum. However, if the quantum fluctuations effects are relatively suppressed , then the
dynamical mass of quarks must vanish as well as the effects of the U(1)A anomaly.

We have just mentioned that in a bound state quantum system with large enough n or L
the effects of quantum fluctuations must be suppressed and vanish asymptotically.12 Hence
at large hadron masses (i.e. with either large n or large L) we should anticipate symmetries
of the classical QCD Lagrangian. Then it follows that in such systems both the chiral and
U(1)A symmetries must be restored. This is precisely what we see phenomenologically. In
the nucleon spectrum the doubling appears either at large n excitations of baryons with the
given small spin or in resonances of large spin. Similar features persist in the delta spectrum.
In the meson spectrum the doubling is obvious for large n excitations of small spin mesons
and there are signs of doubling of large spin mesons (the data are, however, sparse). It would
be certainly interesting and important to observe systematically multiplets of parity-chiral
and parity-U(1)A groups (or, sometimes, when the chiral and U(1)A transformations con-
nect different hadrons, the multiplets of the U(2)L × U(2)R group). The high-lying hadron
spectra must be systematically explored.

11The instanton itself is a semiclassical gluon field configuration. But chiral and U(1)A symmetry

breakings by instantons is a quark field quantum fluctuations process. This is because these

breakings are due to chiral quark pair creation from the vacuum by the instanton.

12That the quantum fluctuations effects vanish in the quantum bound state systems at large n or

L is well known e.g. from the Lamb shift. The Lamb shift is a result of the radiative corrections

(which represent effects of quantum fluctuations of electron and electromagnetic fields) and vanishes

as 1/n3, and also very fast with increasing L. As a consequence high in the hydrogen spectrum

the symmetry of the classical Coulomb potential gets restored.
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The strength of the argument given above is that it is very general. Its weakness is that
we cannot say anything concrete about microscopical mechanisms of how all this happens.
For that one needs a detailed microscopical understanding of dynamics in QCD, which is
both challenging and very difficult task. But even though we do not know how microscop-
ically all this happens, we can anticipate that in highly excited hadrons we must observe
symmetries of the classical QCD Lagrangian. The only basis for this statement is that in
such hadrons a semiclassical description is correct.

As a consequence, in highly excited hadrons the valence quark motion has to be described
semiclassically and at the same time their chirality (helicity) must be fixed. Also the gluonic
field should be described semiclassically. All this gives an increasing support for a string
picture [8] of highly excited hadrons. Indeed, if one assumes that the quarks at the ends
of the string have definite chirality, see Fig. 10, then all hadrons will appear necessarily in
chiral multiplets [9]. The latter hypothesis is very natural and is well compatible with the
Nambu string picture. The ends of the string in the Nambu picture move with the velocity
of light. Then, (it is an extention of the Nambu model) the quarks at the ends of the string
must have definite chirality. In this way one is able to explain at the same time both Regge
trajectories and parity doubling.

ss

p

p

FIG. 10. Rotating string with the right and the left quarks at the ends.

One arrives at the following situation: (i) the hadrons with the different chiral configura-
tions of the quarks at the ends of the string which belong to the same parity-chiral multiplet
and that belong to the same intrinsic quantum state of the string must be degenerate; (ii)
the total parity of the hadron is determined by the product of parity of the string in the
given quantum state and the parity of the specific parity-chiral configuration of the quarks
at the ends of the string. There is no analogy to this situation in the nonrelativistic physics
where parity is only determined by the orbital motion of particles. Thus one sees that for
every intrinsic quantum state of the string there necessarily appears parity doubling of the
states with the same total angular momentum.

The spin-orbit operator ~σ·~L does not commute with the helicity operator ~σ ·~∇. Hence the
spin-orbit interaction of quarks with the fixed chirality or helicity is absent. In particular,
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this is also true for the spin-orbit force due to the Thomas precession

UT = −~σ · ~ωT ∼ ~σ · [~v,~a] ∼ ~v · [~v,~a] = 0, (50)

where UT is the energy of the interaction and ~ωT , ~v and ~a are the angular frequency of
Thomas precession, velocity of the quark and its acceleration, respectively.

The absense of the spin-orbit force in the chirally restored regime is a very welcome
feature because it is a well-known empirical fact that the spin-orbit force is either vanishing
or very small in the spectroscopy in the u, d sector [39]. This fact is difficult, if impossible,
to explain within the potential constituent quark models.

In addition, for the rotating string

~σ(i) · ~R(i) = 0, (51)

~σ(i) · ~R(j) = 0, (52)

where the indices i, j label different quarks and ~R is the radius-vector of the given quark in
the center-of-mass frame. The relations above immediately imply that the possible tensor
interactions of quarks related to the string dynamics should be absent, once the chiral sym-
metry is restored.

XII. CONCLUSIONS

We have demonstrated in these lectures that the chiral symmetry of QCD is crucially im-
portant to understand physics of hadrons in the u, d (and possibly in the u, d, s) sector. The
low-lying hadrons are mostly driven by the spontaneous breaking of chiral symmetry. This
breaking determines the physics and effective degrees of freedom in the low-lying hadrons.
For example, it is SBCS which sheds a light on the meaning of the constituent quarks. The
latter ones are quasiparticles and appear due to coupling of the valence quarks to the quark
condensates of the vacuum. The pion as Nambu-Goldstone boson represents a relativistic
bound state of quasiparticles Q and Q̄ and is a highly collective state in terms of original
bare quarks. A strength of the residual interaction between the quasiparticles in the pion is
dictated by chiral symmetry and is such that it exactly compensates the mass of the con-
stituent quarks so the pion becomes massless in the chiral limit. In the low-lying baryons
the physics at low momenta is mostly dictated by the coupling of constituent quarks and
Goldstone bosons. Then a crucially important residual interaction between the constituent
quarks in the low-lying baryons is mediated by the pion field, which is of the flavor- and
spin-exchange nature.

However, this physics is relevant only to the low-lying hadrons. In the high-lying hadrons
the chiral symmetry is restored, which is referred to as effective chiral symmetry restoration
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or chiral symmetry restoration of the second kind. A direct manifestation of the latter phe-
nomenon is a systematical appearance of the approximate chiral multiplets of the high-lying
hadrons. The essence of the present phenomenon is that the quark condensates which break
chiral symmetry in the vacuum state (and hence in the low-lying excitations over vacuum)
become simply irrelevant (unimportant) for the physics of the highly excited states. The
physics here is such as if there were no chiral symmetry breaking in the vacuum. The va-
lence quarks simply decouple from the quark condensates and consequently the notion of the
constituent quarks with dynamical mass induced by chiral symmetry breaking becomes irrel-
evant in highly excited hadrons. Instead, the string picture with quarks of definite chirality
at the end points of the string should be invoked. In recent lattice calculations DeGrand
has demonstrated that indeed in the highly excited mesons valence quarks decouple from
the low-lying eigenmodes of the Dirac operator (which determine the quark condensate via
Banks-Casher relation) and so decouple from the quark condensate of the QCD vacuum [36].

Hence physics of the high-lying hadrons is mostly physics of confinement acting between
the light quarks. Their very small current mass strongly distinguishes this physics from the
physics of the havy quarkonium, where chiral symmetry is irrelevant and the string (flux
tube) can be approximated as a static potential acting between the slowly moving heavy
quarks. In the light hadrons in contrast the valence quarks are ultrarelativistic and their
fermion nature requires them to have a definite chirality. Hence the high-lying hadrons in
the u, d sector open a door to the regime of dynamical strings with chiral quarks at the ends.
Clearly a systematic experimental exploration of the high-lying hadrons is required which
is an interesting and important task and which should be of highest priority at the existing
accelerators and at the forthcoming ones like PANDA at GSI and JPARC.
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